Engineering Tech
Article | July 13, 2022
Most buildings, whether residential, commercial, or industrial, consume a significant amount of energy over their lifetime, whether for lighting, heating, ventilation, or plugged-in devices. Buildings consume approximately 40% of global energy, 25% of global water, 40% of global resources, and emit approximately one-third of global greenhouse gases.
The energy required to power these structures has risen precipitously in recent decades, putting an increasing strain on national power grids. This has increased the pressure to generate power by burning fossil fuels, contributing to the current climate change. This lethal cause and effect has compelled many engineers and policymakers to consider how we can reduce energy consumption in the buildings we build.
What is a Zero-Energy Building?
A zero-energy building (ZEB) is one in which the total energy used over the course of a year is equal to the amount of renewable energy produced - in other words, it produces enough energy to meet its own annual requirements. This means it does not require energy from the power grid, lowering greenhouse gas emissions. In addition to mortgage or bank repayments, utility bills are one of the most expensive running costs for these homes, offices, and manufacturing plants. So there are financial as well as environmental reasons for having ZEBs.
The scope and approach of these terms vary, but the fundamental goal of reducing energy usage, improving building energy performance, and lowering greenhouse gas emissions applies to all definitions.
Components of A Zero-Energy Building:
A ZEB has two main components: reducing the building's energy consumption and producing renewable energy for on-site use. The first key element (lowering the total amount of energy used in a building) can be achieved through the use of energy-efficient lighting systems, insulation, better water management, improved ventilation systems, and smart meters. Even changing occupant behavior can have an impact on a building's energy efficiency. The second component (on-site generation of renewable energy) could include installing solar panels, small wind turbines, or micro combined heat and power systems to meet a building's electricity, heating, or cooling needs. Any excess energy generated by the building can be transferred to the national grid, allowing the building's owners to profit from their own thriftiness.
Zero energy cities are an engineered extension of zero energy buildings. As more buildings become energy self-sufficient, communities and cities may become zero energy. This means that the total energy consumed by a city's infrastructure will be equal to the amount of renewable energy generated.
Engineering solutions that create zero-energy buildings, whether residential, commercial, or industrial, are the first steps toward achieving zero energy cities - a transition that will be critical in slowing rampant climate change and that we must now accelerate.
Read More
Engineering Tech
Article | July 14, 2022
Andy Magee is a Senior Civil Engineer at Leeds City Council and ICE Yorkshire & Humber’s STEM Ambassador of the Year. STEM outreach is crucial, says Andy. Firstly to better inform the next generation of the opportunities available to them, but also to the civil engineering industry which is facing a potential skills shortage in the future. Outreach work helps us to grow the potential engineers of tomorrow and equip them with the skills needed for an ever-changing world of work – in being able to find and convey innovative ideas and solutions for example.
Read More
Market, Engineering Tech
Article | July 11, 2022
Major infrastructure interventions come with significant uncertainty – this is something explored before before. Provision of high quality infrastructure is a challenge faced by every government around the world, and there are many uncertainties around the planning and funding of these schemes that have to be weighed up and balanced.
The Enabling Better Infrastructure (EBI) programme encapsulated best practice principles from around the world. We have dipped into this best practice toolkit to underpin our review of the UK’s strategic infrastructure planning system led by the National Infrastructure Commission (NIC), the results of which we have published today.
Read More
Engineering Tech
Article | July 7, 2021
Experts from the construction industry predict a bright future for precast elements: the average annual growth rate of the global precast concrete industry is expected to be 5.3% between 2021 and 2028. In 2020, the precast concrete market was valued at around USD 92.14 billion and is anticipated to grow to over USD 139.33 billion in 2028[1]. However, the average growth rate of the construction industry as a whole is expected to be just 3.2% annually according to the Global Construction Report. Why industrialized construction in particular is growing faster than the rest of the construction industry can be explained by the numerous advantages of this technology.
Read More