How Engineering Answers to Why Cybersecurity is Critical to Realizing the Full Potential of 5G Networks?

How Engineering article

5G is the next quantum leap in mobile and wireless communication, providing unprecedented speed, capacity, and capabilities. In the 5G world, networks will serve trillions of connected things, and each person will be supported by hundreds of connected devices.

In addition to these opportunities, the combination of new capabilities and virtualisation in 5G introduces new threats. 5G has significantly more network end-points that cyber criminals can exploit, and 5G virtualisation means that the entire connection is based on software, which is inherently hackable.

Transforming society by reconceptualising the “network”

Understanding where the vulnerabilities exist is a critical first step toward protecting 5G networks from cyber threats.

This entails implementing a process that involves identifying, profiling, and assessing the health of each component before allowing it to connect to the network, and, if necessary, restricting access to the 5G service based on this assessment. It's known as a zero-trust approach, and it will assist organizations throughout the 5G ecosystem in striking the right balance between business risk and 5G security.

5G Expands Cyber Risks

  • The network is transitioning away from centralized, hardware-based switching and toward distributed, software-defined digital routing. However, in the 5G software defined network, that activity is pushed outward to a web of digital routers spread throughout the network, removing the possibility of chokepoint inspection and control.
  • 5G adds to its cyber vulnerability by virtualizing higher-level network functions previously performed by physical appliances in software. These activities are based on the Internet Protocol common language and well-known operating systems.
  • Even if it were possible to secure the network's software vulnerabilities, the network is also managed by software—often early generation artificial intelligence—that is vulnerable.
  • The dramatic increase in bandwidth that enables 5G opens up new attack vectors. Low-cost, short-range small-cell antennas deployed throughout urban areas become new physical hard targets.
  • Finally, there is the vulnerability created by connecting tens of billions of hackable smart devices (actually, small computers) to the Internet of Things network. Plans are in the works for a diverse and seemingly endless list of IoT-enabled activities, ranging from public safety to battlefield to medical to transportation—all of which are both wonderful and uniquely vulnerable.

In this paper, we argue that a zero-trust approach, combined with company leaders focusing on three key pillars—trust, resilience, and enablement—will form the foundation of a sound cyber strategy, allowing companies to roll out 5G quickly and safely.

Spotlight

DOWL

For more than 50 years, it has been the quality of our people that defines the DOWL difference. Our staff of dedicated professionals consistently exceeds our client's expectations, and has enabled us to develop into one of the West's leading planning, surveying, civil/transportation and environmental services firms.

OTHER ARTICLES
Engineering Tech

How can we design better for Buildability?

Article | July 14, 2022

The use of highly sophisticated building models – as a result of BIM – has transformed how we design the built environment. However, although the digital models used by architects and engineers during design enable impressive visualization and documentation of the designer’s intent, the data and considerations required to construct it are often considered separately. We typically use the design model to communicate the final state of the project – not how it is constructed, even though such considerations result in a more accurate estimate on both project time and cost. Of course, different flavors of BIM tools exist that do consider such topics during manufacturing and construction, but how often do we truly consider the impact of the construction process as part of making the right initial design decisions?

Read More
Engineering Tech

Feature engineering in machine learning

Article | August 4, 2021

Feature engineering is the process of extracting new variables by transforming raw data to improve the predictability of a machine learning model. But feature engineering is not just this kind of simple translation of categories like names or colors into numbers. The following section includes a collection of different kinds of engineering approaches that go beyond a translation of categories into numbers and address needs such as transforming numbers into categories or filtering data points due to missing or false data.

Read More
Engineering Tech

Infrastructure Policy Watch: UK government reviews road and rail development policy

Article | July 20, 2022

The UK’s Secretary of State for Transport, Grant Shapps MP, has announced a full review of the National Policy Statement (NPS) for national networks covering major roads and rail. NPSs outline the UK government’s strategic policy intent for infrastructure development and are used as part of the planning system to determine if a proposed project should be granted development consent. The review aims to bring the national networks NPS in line with commitments to achieve net-zero emissions by 2050. The secretary of state said: "The current National policy statement (NPS) on national networks, the government’s statement of strategic planning policy for major road and rail schemes, was written in 2014 – before the government’s legal commitment to net zero, the 10-point plan for a green industrial revolution, the new sixth carbon budget and most directly the new, more ambitious policies outlined in the transport decarbonisation plan."

Read More
Market

The Semiconductor Chip Shortage

Article | September 27, 2021

640K Ought To Be Enough for Anybody That infamous statement—whether Bill Gates said it or not, goes to show the change in computing and the demands on the semiconductor industry over the last 40 years. At the beginning of the ‘70s, there was no expectation that the personal computer could become an affordable item for the man in the street. By 1979, however, Atari had released the 400 and 800 series of home computers. Three years later, the Commodore 64 made its debut, featuring 64KB of RAM and using an 8-bit CPU. In 1977 Steve Wozniak designed the Apple II, an 8-bit home computer. Launched at the 1977 West Coast Computer Faire, it was aimed at the home consumer market rather than the business market. August 12 1981: The IBM PC It could be argued that the first non-Apple PC, as we've come to know it, was the IBM 5150 personal computer. Its success spurred the production of IBM clones, or IBM PC compatible computers, with Columbia Data Products (CDP) producing the first in June 1982. A Case of History Repeating Itself? In the early ‘80s, anticipating the demand for PC’s to continue, memory chip manufacturers ramped up the production of RAM. But by September 1985, the market had stagnated, and a DRAM chip could be bought for $2.95. Demand for computers had slumped, and this low price reflected industry slowdown and extreme overproduction. Roll On To 1988 and the Price of Computer Chips Rocketed With a glut of existing RAM chips in the marketplace, manufacturers were cautious of the overproduction of 256-kilobit DRAM chips and converted their factories for 1-megabit chips. This shows that chip producers drastically misread the market. 1-megabit chips took significantly longer to manufacture, and so before too long, there was a shortage of RAM, causing prices to increase. The situation began to improve by the next year. Since then, although there have been years when supply was affected, it has been nowhere as catastrophic as now. The Current Semiconductor Chip Crisis We are facing an unprecedented shortage of semiconductor chips which is affecting worldwide markets. COVID-19 undoubtedly had a massive influence on this, but the demand for microchips was already soaring. 2019 COVID-19 Appears Although in November of 2019, a person displayed the first detectable case of COVID-19 in China, there was little else to warn of what was about to come. In the following months, as cases increased, so did hospital admissions. With the horror of widespread deaths, we saw countries bringing in protective measures and restrictions. These became increasingly severe and ranged from social distancing to working from home. This had a direct effect on the industry, seeing output slowed or temporarily ceased. 2020 Onwards In February of 2020, the indirect effects of the pandemic began to bite. Companies closed offices or limited the number of onsite staff. Employees were also encouraged to work offsite where possible. Other employers were forced to furlough employees. For some, the concept of working from the home kitchen table became a daily reality. This was seen as essential to ensure that services were maintained, albeit at a reduced capacity. For factory-based and hospitality industries, the impact was more dramatic. Company Employees Working From Home The decision by many companies to encourage staff to work from home was a direct result of COVID-19 and the resulting Government restrictions, but this, in turn, caused an indirect effect on the semiconductor shortage. In some cases, employees might have had existing company laptops issued to them for use in the workplace. In other cases, the use of their personally-owned device might have been sanctioned for company work. But in other circumstances, the company would either pay the employee to upgrade their laptop or provide a new company laptop with the necessary application and security software installed. This added to the general increased demand for computers that had computer manufacturers struggling to procure chips. Furloughed Employees Many furloughed employees suddenly finding themselves trapped at home with limited opportunities (if any) for socializing turned to or spent more time on gaming. This fuelled an interest in the latest products on the market and a keen appetite for products about to be launched. In turn, manufacturers clamored for more chips. Home Schooling Schools and colleges rose to the challenge of providing continuing education for their pupils and turned to online teaching when the school buildings were closed. Children were being home-schooled by parents and following online lessons. But it was essential that the children had the necessary resources. The basic requirements were a laptop with a webcam and a reliable internet connection. Subsequently, laptop sales increased dramatically. Who Is Taking The Hit? A simple answer is— any industry whose products depend on a high level of semiconductor chips, but in particular, the main players feeling the pain are the automotive and consumer electronics markets. The Auto Industry Automotive Companies Fall To the Back of the Semiconductor Chip Queue As COVID-19 began to take a grip, and with falling demand for vehicles, auto manufacturers either closed sites temporarily or reduced operations. Subsequently, they scaled down backorders from semiconductor suppliers. Meanwhile, the consumer electronics market was thriving and crying out to suppliers for more semiconductor chips. Later, when manufacturing was resumed, auto manufactures found themselves at the back of the queue. What Chips Are Used In Motor Vehicles? There are various types of chips used by auto manufacturers in their vehicles, ranging from commodity chips to microprocessors. According to Statista, “Infineon, NXP, and Renesas were the leading automotive semiconductor manufacturers worldwide in 2020. Infineon's market share was estimated at around 13.2 percent. The total market in 2020 was sized at around 35 billion U.S. dollars.” The Domestic Market (Consumer Electronics) Broadly speaking, this sector covers anything that falls into the entertainment, communications, and recreation categories. Although visits to high street stores to make purchases proved difficult, if not impossible during lockdown periods, online sales soared. But this boom has caused manufacturers a headache, as launches of new products have had to be delayed and fulfilment of the demand for existing models could not be met due to the chip shortage. Other Contributory Factors to the Crisis Although COVID-19 disrupted chip manufacture by causing foundry shutdowns and the halting of production, it wasn’t the only factor. An already beleaguered market was battered by other factors compounding the chip shortage crisis. Drought in Taiwan Water, a major necessity for semiconductors production, has been in short supply due to the worst drought in 56 years. Suez Canal Blockage In March 2021, the 400-metre-long (1,300ft) container ship ‘Ever Given’ ran aground in the Suez Canal and blocked the channel for six days, further impacting distribution and supply. Factory Fire Japanese chipmaker Renesas Electronics Corp. the world's third-largest supplier of automotive chips suffered a fire at its factory. Severe Weather Conditions in Texas In February Samsung, NXP, and Infineon chip fabs shut down in Texas amid record storm. Why Not Just Produce More Chips? While attempting to address the global chip shortage as expeditiously as possible, semiconductor manufacturers cannot afford to make a knee-jerk reaction. If fabrication plants are at maximum capacity or are only structured to make one type of chip, why not build more fabs? Semiconductor wafer fabs are hugely expensive to build. It takes considerable time to construct a new fab, with some as large as small cities. These fabrication plants, also known as foundries, require highly controlled environments where temperature, humidity and static electricity are controlled, and dust-free environments are guaranteed. As an immediate response, building new fabs is not a practical solution to the problem. Long term strategies will have to be put in place as the whole situation is addressed. When Will The Global Chip Shortage End? There are differing views being expressed on this tricky question. Some are optimistic, considering that the worst of the situation is over. Others provide a gloomier outlook, warning that we could be experiencing shortages well into another two years. Crisis management expert Edward Segal writing in Forbes: “The semiconductor chip crisis that hit companies around the world shows no signs of ending any time soon and will continue to impact the supply chains for many industries. Indeed, some organizations have yet to fully recover from the impact of the blockage of the Suez Canal last March on their ability to send and receive essential materials, parts and supplies.” Are There Any Lessons To Be Learned? A cynical reply might be—expect the unexpected. Of course, it is impossible to predict and plan for every possible eventuality. Changing market trends should be anticipated, whereas something as unforeseen as a global pandemic cannot. Manufacturers, however, should seriously take a look at their contingency plans. It seems that far and above the other problems of the chip crisis, the biggest headache within the semiconductor industry is the supply chains. Distribution Networks Writing in an article for ZDNet, Daphne Leprince-Ringuet: “The semiconductor supply chain is flawed, and it's going to take a long time until things get better, despite the combined efforts of industry and regulators.” Supply chains are the highways of trade upon which product delivery depends. But the semiconductor supply chain is hugely complex and is spread across several countries. Admittedly, it is essential to create more fabs over the following years. Still, it is critical to maintain a watchful eye on supply chain policies to ensure future semiconductor chip demand fulfilment. Just-In-Time (JIT) Model Considered as an effective approach by some automotive manufacturers as an efficient method of business management in times of plenty. It becomes counterproductive in times of shortage when they will face long chip manufacture lead times. Chip manufacturers are advocating a greater knowledge of their customers’ production maps, stating that even a two quarter indication is insufficient for planning. Think Outside The Box Be open to some lateral thinking. Recycling could be an interim response to chip shortage. All Of A Sudden Vintage Equipment Is A Hot Commodity Steven Zhou writing in Forbes, reports that old (obsolete) fabs could be suitable for the production of some current 'smart' devices. While the creation of extra fabs can take over two years and the building of the manufacturing equipment up to eighteen months, repurposing old equipment could be a source of additional capacity. Reliance On Asia The current crisis has brought about an awareness of the inadvisability of an ongoing reliance on Asian fabs for the supply of semiconductor chips for U.S. and European markets. The Future According to the Semiconductor Industry Association (SIA) in a publication Strengthening The Global Semiconductor Supply Chain In An Uncertain Era “Over the next ten years, the industry will need to invest about $3 trillion in R&D and capital expenditure globally across the value chain in order to meet the increasing demand for semiconductors.” Moore’s Law Is Not Dead Moore's law is the premise first expressed in 1965 by Gordon E. Moore, the co-founder of Intel, that the number of transistors on a microchip doubles every two years, though the cost of computers is halved. Or put another way—that we can expect to see larger-scale integration with more circuitry packed into chips for the same form factor. If this proves true, manufacturers will take advantage of these cheaper and more advanced chips to develop a new generation of products that consumers will be only too eager to buy.

Read More

Spotlight

DOWL

For more than 50 years, it has been the quality of our people that defines the DOWL difference. Our staff of dedicated professionals consistently exceeds our client's expectations, and has enabled us to develop into one of the West's leading planning, surveying, civil/transportation and environmental services firms.

Related News

Engineering Tech, Construction

Comfort Systems USA Announces Acquisition

Business Wire | February 01, 2024

Comfort Systems USA, Inc. today announced that it has closed its previously announced transaction to acquire Summit Industrial Construction, LLC (“Summit”) headquartered in Houston, Texas. As previously disclosed, Summit is a specialty industrial mechanical contractor offering engineering, design-assist and turnkey, direct hire construction services of modular systems serving the advanced technology, power, and industrial sectors. Summit’s capabilities encompass a wide range of modular and site-based construction, including process piping, equipment setting, large pipe rack trestles, and related steel erection and specialty concrete work. Summit is a trusted supplier to some of the world’s largest advanced technology, power and industrial companies and is currently deployed on several major chip fabrication projects. Initially, Summit is expected to contribute annualized revenues of approximately $375 million to $400 million, and earnings before interest, taxes, depreciation, and amortization of $35 million to $40 million. In light of the amortization expense, Summit is expected to make a neutral to slightly accretive contribution to earnings per share in 2024 and 2025. Brian Lane, Comfort Systems USA’s Chief Executive Officer, commented, “We are delighted to announce the closing of our agreement to acquire Summit, an extremely capable provider of modular and other complex mechanical services. Summit brings a stellar reputation as a modular technology leader in growing end markets, including multiple ongoing and large semiconductor projects. We are happy to welcome Summit’s wonderful leadership team and excellent production and craft workers across many states, and we are confident Summit will continue to innovate and grow as a part of our network of world-class contracting companies. We are grateful that Summit has chosen to become part of Comfort Systems USA.”

Read More

Engineering Tech, Construction

PirTano Construction acquires Powerlink Electric

PR Newswire | January 25, 2024

PirTano Construction Company, Inc. ("PirTano"), a leading Midwest-based infrastructure and utility services-focused underground construction company operating in the communications and sewer & water sectors, is pleased to announce its acquisition of Powerlink Electric ("Powerlink"). The transaction closed on November 17, 2023. Mike Piraino, President of PirTano, said, "The acquisition of Powerlink will operate as a new electrical division, and brings additional service offerings and bench strength of employees as we look forward to continuing to support our customers while capitalizing on additional opportunities." Founded in 2006 by Doug Pantle and Steve Lipinski, Powerlink Electric ("Powerlink"), is a full-service electrical and telecommunications contractor based in Vernon Hills, Illinois with an outstanding reputation in its regional marketplace and is well known for the reliability and quality of its service. Powerlink primarily focuses on commercial and industrial projects and operates in Northeastern Illinois and surrounding areas. Powerlink will continue to operate under the current leadership as a wholly owned subsidiary of PirTano. Rising Point Capital ("RPC"), commented on the transaction, "Doug and Steve have built a tremendous reputation in its marketplace. We are very excited to partner with them to help accelerate their growth and with leading a new division at PirTano."Generational Equity, a leading mergers and acquisitions advisor for privately held businesses, served as the exclusive advisor to Powerlink. Generational Equity Executive Managing Director of M&A – Central Region, Michael Goss, Stephen Dinehart, a Generational Group Authorized Affiliate, with support from Vice President, M&A, Lance Thomasson successfully closed the deal.

Read More

Design, Mechanical and Motion Systems, Engineering Tech

SPX FLOW Launches Universal 2 ND Pump Series Designed Uniquely for Industrial Market

PR Newswire | January 29, 2024

SPX FLOW, has released the Universal® 2 ND Positive Displacement Pump (U2 ND) Series designed with industrial users in mind. The pumps offer the quality and durability the Waukesha Cherry-Burrell brand is known for while optimizing cost and suitability for the industrial market. The U2 ND series significantly expands the WCB pump range, aimed at enhancing reliability and performance across industrial applications while outperforming other pump styles, such as industrial lobe, gear or progressive cavity pumps.The design features improvements uniquely suited for industrial applications, including: Total cost of ownership: The pumps ensure a long running life, given their robust construction materials and designs tailored for each application. Because of its high volumetric efficiency, the pumps can be used to dose fluids, eliminating the need for an additional metering pump.  Efficiency: The U2 ND pump reduces slip, which occurs when fluids move backward from the liquid flow due to internal clearances. Lower slip means more efficiency, reducing the need for higher horsepower motors. Also, the series can process fluids over longer spans due to its high-pressure capability, which reduces the need for multiple pumps in these applications. Reliability: WCB is a proven and trusted global brand dating back to the 1880s. The pumps are made with durable, corrosive-resistant materials compatible with industrial environments. A robust design, equipped with industrial flanges or sanitary fittings, ensures manufacturers can choose the configuration to meet their needs.  Additionally, an extensive sales channel and domestic manufacturing footprint support this pump series, enabling quick deliveries on standardized parts across the entire Universal pump product line. The U2 ND series is complemented by the Universal Industrial 5000 series, which is tailored for users who require OEM (Original Equipment Manufacturer) seals for their industrial pumping operations. Julien Bassett, Pumps Global Product Manager: "Waukesha Cherry-Burrell has extensive experience offering pumps to customers built with their needs in mind. We wanted to expand our offerings to provide quality and durability of the SPX FLOW brand while catering to the unique needs of industrial manufacturers and their applications."

Read More

Engineering Tech, Construction

Comfort Systems USA Announces Acquisition

Business Wire | February 01, 2024

Comfort Systems USA, Inc. today announced that it has closed its previously announced transaction to acquire Summit Industrial Construction, LLC (“Summit”) headquartered in Houston, Texas. As previously disclosed, Summit is a specialty industrial mechanical contractor offering engineering, design-assist and turnkey, direct hire construction services of modular systems serving the advanced technology, power, and industrial sectors. Summit’s capabilities encompass a wide range of modular and site-based construction, including process piping, equipment setting, large pipe rack trestles, and related steel erection and specialty concrete work. Summit is a trusted supplier to some of the world’s largest advanced technology, power and industrial companies and is currently deployed on several major chip fabrication projects. Initially, Summit is expected to contribute annualized revenues of approximately $375 million to $400 million, and earnings before interest, taxes, depreciation, and amortization of $35 million to $40 million. In light of the amortization expense, Summit is expected to make a neutral to slightly accretive contribution to earnings per share in 2024 and 2025. Brian Lane, Comfort Systems USA’s Chief Executive Officer, commented, “We are delighted to announce the closing of our agreement to acquire Summit, an extremely capable provider of modular and other complex mechanical services. Summit brings a stellar reputation as a modular technology leader in growing end markets, including multiple ongoing and large semiconductor projects. We are happy to welcome Summit’s wonderful leadership team and excellent production and craft workers across many states, and we are confident Summit will continue to innovate and grow as a part of our network of world-class contracting companies. We are grateful that Summit has chosen to become part of Comfort Systems USA.”

Read More

Engineering Tech, Construction

PirTano Construction acquires Powerlink Electric

PR Newswire | January 25, 2024

PirTano Construction Company, Inc. ("PirTano"), a leading Midwest-based infrastructure and utility services-focused underground construction company operating in the communications and sewer & water sectors, is pleased to announce its acquisition of Powerlink Electric ("Powerlink"). The transaction closed on November 17, 2023. Mike Piraino, President of PirTano, said, "The acquisition of Powerlink will operate as a new electrical division, and brings additional service offerings and bench strength of employees as we look forward to continuing to support our customers while capitalizing on additional opportunities." Founded in 2006 by Doug Pantle and Steve Lipinski, Powerlink Electric ("Powerlink"), is a full-service electrical and telecommunications contractor based in Vernon Hills, Illinois with an outstanding reputation in its regional marketplace and is well known for the reliability and quality of its service. Powerlink primarily focuses on commercial and industrial projects and operates in Northeastern Illinois and surrounding areas. Powerlink will continue to operate under the current leadership as a wholly owned subsidiary of PirTano. Rising Point Capital ("RPC"), commented on the transaction, "Doug and Steve have built a tremendous reputation in its marketplace. We are very excited to partner with them to help accelerate their growth and with leading a new division at PirTano."Generational Equity, a leading mergers and acquisitions advisor for privately held businesses, served as the exclusive advisor to Powerlink. Generational Equity Executive Managing Director of M&A – Central Region, Michael Goss, Stephen Dinehart, a Generational Group Authorized Affiliate, with support from Vice President, M&A, Lance Thomasson successfully closed the deal.

Read More

Design, Mechanical and Motion Systems, Engineering Tech

SPX FLOW Launches Universal 2 ND Pump Series Designed Uniquely for Industrial Market

PR Newswire | January 29, 2024

SPX FLOW, has released the Universal® 2 ND Positive Displacement Pump (U2 ND) Series designed with industrial users in mind. The pumps offer the quality and durability the Waukesha Cherry-Burrell brand is known for while optimizing cost and suitability for the industrial market. The U2 ND series significantly expands the WCB pump range, aimed at enhancing reliability and performance across industrial applications while outperforming other pump styles, such as industrial lobe, gear or progressive cavity pumps.The design features improvements uniquely suited for industrial applications, including: Total cost of ownership: The pumps ensure a long running life, given their robust construction materials and designs tailored for each application. Because of its high volumetric efficiency, the pumps can be used to dose fluids, eliminating the need for an additional metering pump.  Efficiency: The U2 ND pump reduces slip, which occurs when fluids move backward from the liquid flow due to internal clearances. Lower slip means more efficiency, reducing the need for higher horsepower motors. Also, the series can process fluids over longer spans due to its high-pressure capability, which reduces the need for multiple pumps in these applications. Reliability: WCB is a proven and trusted global brand dating back to the 1880s. The pumps are made with durable, corrosive-resistant materials compatible with industrial environments. A robust design, equipped with industrial flanges or sanitary fittings, ensures manufacturers can choose the configuration to meet their needs.  Additionally, an extensive sales channel and domestic manufacturing footprint support this pump series, enabling quick deliveries on standardized parts across the entire Universal pump product line. The U2 ND series is complemented by the Universal Industrial 5000 series, which is tailored for users who require OEM (Original Equipment Manufacturer) seals for their industrial pumping operations. Julien Bassett, Pumps Global Product Manager: "Waukesha Cherry-Burrell has extensive experience offering pumps to customers built with their needs in mind. We wanted to expand our offerings to provide quality and durability of the SPX FLOW brand while catering to the unique needs of industrial manufacturers and their applications."

Read More

Events

ISICE 2024

Conference

ISICE 2024

Conference